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ABSTRACT

In reactions centered at phosphorus, whether chemical or bio-
chemical, a pentacoordinate transition state species or an inter-
mediate or a stable molecule is very often encountered. In this
Account, recent developments in this important area are discussed
and compared with the earlier literature. Particular reference, with
results from our laboratory, will be made to the apicophilicity,
fluxional behavior, bond parameters, and tetra- vs pentacoordi-
nation. It is shown that the familiar apicophilicity rules give an
oversimplified picture as demonstrated by several exceptions.
Extremities of the P—O or P—N bond distances in PX;N and PO4N
systems as revealed by a database search and possible future
directions in this area are also discussed.

Introduction

Nucleophilic displacement reactions at a tetracoordinate
phosphorus(V) center are involved virtually in every aspect
of cellular energetics and many aspects of biosynthesis.!?
Both enzymatic and nonenzymatic hydrolyses of RNA are
shown to take place via cyclic pentacoordinate trigonal
bipyramidal transition state species.? It is assumed that
the phosphoryl transfer reactions such as energy transfer
and DNA formation via ATP also go through the penta-
coordinate phosphorus intermediate, which is formed by
the nucleophilic attack at the tetracoordinate phosphorus
center.'® The phospho-enzyme intermediate (E—P) in the
action of protein tyrosine phosphatases (signaling en-
zymes that control a diverse array of cellular processes)
is assumed to be pentacoordinate (species I in Figure 1).1d
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FIGURE 1. Transition state (I) for the phospho-enzyme intermediate
formation in Yersinia protein tyrosine phosphatases (PTPs) and a
simplified drawing of the 3-glucose-1,6-(bis)phosphate intermediate
(Il) structure in the active site of 5-phosphoglucomutase. The extra
hatched-line bonds from 0(1), 0(3), and 0(4) are hydrogen bonds.
Selected bond parameters are as follows: P—0(1) 2.0 A; P—0(2),
P—0(3), and P—0(4) 1.7 A; P—0(5) 2.1 A; 0(1)—P—0(5) 174°.

Recent structural characterization of the stabilized pen-
tacovalent phosphorane (II) in the biochemical phospho-
ryl group transfer reaction is significant in this context.?
Latest studies have also shown that the inhibition of
human o-thrombin by a phosphonate tripeptide proceeds
via a pentacoordinate phosphorus intermediate.* Thus the
central role of phosphates in the living world has given
rise to extensive kinetic and mechanistic investigations on
solvolytic reactions of simple phosphoric acid esters with
emphasis on the formation, isomerization, and breakdown
of the pentacoordinate intermediate.'®>¢ Theoretical cal-
culations are also useful in characterizing the structure
of transition states/intermediates, but the mechanistic
speculations based on such calculations need to be tested
experimentally.”® The behavior of hydroxyphosphoranes
and their salts should be interesting in this context, but
there are only a few well-authenticated examples.®

Two other exciting developments related to enzyme
action also call for attention:!® (i) The X-ray crystal
structure of phospholipase D (that catalyzes the hydrolysis
of phospholipids) soaked with dibutyrylphosphatidylcho-
line (a substrate) demonstrates that the reaction proceeds

* Fax: +91-40-23012460. E-mail: kckssc@uohyd.ernet.in.
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via a phosphohistidine intermediate and provides unam-
biguous identification of a catalytic water molecule, ideally
positioned for apical attack on the phosphorus (III; Figure
2a) and consistent with an associative in-line phosphoryl

His448 Asp202

- - R0 OH
(B = nucleoside base; for more details see ref. 10b)

FIGURE 2. (a) A drawing of the active site in phospholipase D
(PLDpme) (I) soaked with dibutyrylphosphatidylcholine for 8 h
showing the location of water poised for attack at the apical site as
revealed by X-ray crystallography and (b) the pentacoordinate
trigonal bipyramidal phosphorus transition state proposed in the
reversible transesterification reaction catalyzed by the hairpin
ribozyme (IV) and the vanadate transition state mimic complex (V)
stabilized by five hydrogen bonds (X-ray).

transfer reaction.'% In one of the structures, an apparent
five-coordinate phosphorus transition state is observed.
(ii) The hairpin ribozyme catalyzes reversible, site-specific
cleavage of the phosphodiester backbone of RNA through
transesterification. A vanadate complex (V) of the enzyme
that mimics the pentacoordinate trigonal bipyramidal
phosphorus transition state (IV) has been characterized
crystallographically and vindicates the proposed mecha-
nism of action (Figure 2b).1%

Pentacoordinate phosphorus is also encountered in the
important Wittig, Aza—Wittig, Horner—Wadsworth—Em-
mons, Seyferth—Gilbert (homologation), Stec (cf. struc-
tures VIa,b), and Mitsunobu esterification reactions.!12
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Pseudorotation proposed for pentacoordinate phosphorus species in the
synthesis of deoxyadenosine cyclic ['®O]phosphate by Stec reaction

Numerous other reactions involving P™ or tetracoordinate
PV compounds also lead to pentacoordinate phospho-
ranes.!3 The propensity of pentacoordinate phosphorus
to further expand its coordination number also warrants
attention with regard to the mechanistic aspects of
phosphoryl transfer enzymes.'* The purpose of this Ac-
count is to highlight recent developments particularly on
the current knowledge of apicophilicity, fluxionality, and

bond parameters. The discussion could serve to under-
stand the stability (lifetime) and stereochemistry of tran-
sient species involved in chemical and biological pro-
cesses.

Bent's Rule, Apicophilicity, and Ring Strain

In the general case of nucleophilic substitution, if the
pentacoordinate phosphorus species (VII; cf. Scheme 1)

Scheme 1
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has sufficient lifetime (nonconcerted pathway), it can
undergo intramolecular ligand exchange processes that
in turn will have a significant bearing on the stereochem-
istry of products. For example, hydrolysis of the exceed-
ingly toxic nerve gas agent VX [O-ethyl-S-(2-diisopropyl-
amino)ethyl methylphosphonothiolate] with an alkali can
lead to different products depending upon whether the
—SR or the —OEt group is apical (Scheme 2).!5 Thus the
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Hydrolysis of VX (a chemical warfare agent)
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relative preference of a substituent to occupy the apical
or equatorial site in the more commonly observed trigonal
bipyramidal (TBP) geometry has been a subject of intense
studies in the past.'6-%2

According to Bent’s rule or in terms of the 3c—4e
bonding picture for the apical bonds in trigonal bipyra-
midal phosphorus, more electronegative substituents
prefer apical sites (i.e., more apicophilic).? This is perhaps
too simplistic a picture. In cyclic/fused ring phosphoranes
with a trigonal bipyramidal phosphorus, ring constraints
dominate over the electronegativity effects in apical site
occupancy even for highly electronegative substituents (cf.
Chart 1, compounds 1-5).1¢ In general, four- to seven-

Chart 1

t-Bu CF
tBu ° CFs
4 (ref.16h) 5 (distorted TBP; ref. 16f) 6 (ref.16e)
X
;/ "Oa @( 03 g CF,
0 0 ¥
e>F|, \1’3—0 LO%E CF,
0 7 | € Y O/ | N—ph
O O

X, 'Y = H, Cl (partial occupancy)

7 (ref.16g) 8 (ref.16c)

9 (ref.17)

membered rings at phosphorus prefer apical—equatorial
disposition (e.g., 1—8), unless constrained by fused rings
(e.g., 9).1” Hydrogen bonding can affect ring conformations
but, unlike ring strain, is not strong enough to change the
apicophilicity of the substituents.!5¢8 High apicophilicity
is supposedly favored by high electronegativity, small size,
and stronger m-acceptor properties; 7-donating and bulkier
groups are supposed to occupy the equatorial site.519
Based primarily on variable temperature NMR or activa-
tion enthalpy different scales of apicophilicity are avail-
able: (a) F > H > CF; > OPh > Cl > SMe > OMe >
NMe, > Me > Ph;% (b) OMe ~ H > COMe ~ SMe >
NMe, > Me > n-Bu;®®@ (¢) Ph > CH,OMe > Me >
CH,Ph > Et > n-Pr ~ n-Bu (in CDCl3) or Ph > CH,OMe
> CH,Ph > Me > Et > n-Pr > n-Bu (in CD3;CN).20P
Theoretical calculations predict the gas-phase apicophi-
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licities in the order F > OH > H > Me > NH, for the
neutral oxyphosphoranes.?’c

In contrast to the compounds shown in Chart 1, the
eight-membered 1,3,2-dioxaphosphocin ring shown in
Chart 2 can readily occupy either diequatorial or apical—

Chart 2
R
R O
X
o) Q¢
Sr—o o_|
A IR Sh—x
o~ o |
Cl o)
R X Cl cl
t-Bu Ph (10) Cl
t-Bu Et (11) R X
t-Bu OCgHgN (oxinate) (12) —
Me Ph(13) t-Bu NHCgH,, (23)
':\"Ae i: ?“125) Me NH, (25)
MZ N((17)) Me NHMe (26)
3
Me NGS (18) Me NHPh (27)

Me NMe, (19) Me N=PPh, (28)

Me NMePh (20)

Me N(-Pr), (21)

Me SCgH,-4-Cl (22)

equatorial disposition in a TBP geometry. This feature is
dictated by the preference of the fifth ligand to go apical
or equatorial thus allowing us to determine its relative
apicophilicity. Holmes?! reported compounds 10 and 11,
and we reported compounds 12—28.168185.22 Note that
without the tert-butyl group ortho to the phenolic oxygen,
the eight-membered ring prefers only the apical—equato-
rial disposition.!6d

The high apicophilicity of an —SR group agrees with
the hydrolysis of the chemical warfare agent VX men-
tioned above. The greater apicophilicity of the phenyl
group compared to methyl is opposite to that given by
Corbridge®d but consistent with that of Akiba;**® however,
the apical occupancy of the ethyl group (compound 14)
compared to the equatorial occupancy of methyl (com-
pound 24) is different from that observed by Akiba.?’®
Perhaps more dramatic are the (i) apical placement of the
bulky fert-butyl group in 15 compared to equatorial
placement of the much smaller methyl group in 24 and,
similarly, (ii) apical placement of —N(i-Pr), in 21 com-
pared to equatorial placement of the more electronegative
and much smaller —NH, in 25.2* These are clear cases of
“reversed apicophilicty” or “antiapicophilicity”.

The significant apicophilic character of carbon over
oxygen is also exhibited in compounds 29 and 30 for
which both C-apical and O-apical isomers are isolated
(note, compounds 30a,b are also important as Wittig
reaction intermediates).”> The C-apical isomer is the
kinetically controlled product. Steric effect is likely to be
the major cause for stabilization against pseudorotation
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in the isomers that exhibit reversed apicophilicity. In the
spirophosphorane 32 (Scheme 3) also, “reversed apico-

Scheme 3
OCH,CF,
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31[5(P) 56.7] 32 [5(P) -65.0, -72.5; X-ray]

philicity” is observed in the five-membered ring (carbon
vs nitrogen) despite the greater steric requirement at the
(=)C(CO2R) center relative to NH center.?® The fused ring
between P(1) and P(2) in the structure of 33 is likely to be

33 [3(P) -51.1(d), 40.0(d), 60.6(s)]

the reason for nitrogen (rather than oxygen) to occupy
the apical position of a trigonal bipyramid.?”

In our efforts to isolate possible intermediates in the
early stages of the Mitsunobu reaction, we have uncovered
a rich variety of pentacoordinate phosphoranes, many
with reversed apicophilicity (Scheme 4).2829 The N(api-
cal)—O(equatorial) disposition for the five-membered ring
in compounds 34—36 and 41 should have been unfavor-
able according to apicophilicity rules. Whether we are
isolating the kinetic or thermodynamic products needs
further verification, but it can be noted that compound
41 can be prepared by both routes a and b shown in

Scheme 4
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Scheme 4. Finally, compound 42 with an apical amide
type NHC(O)R illustrates that the apicophilicity or Bent’s
rule cannot be taken for granted.
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toluene-dg at 243K]

A criterion that can be used to show the involvement
of the lone pair of electrons on nitrogen in 7z-bonding with
phosphorus is the sum of bond angles at nitrogen. In
compounds 21, 38, and 39, this sum at the apical nitrogen
is essentially 360° (planar) but the P—N distances are still
long [1.672(2), 1.763(2), and 1.752 A, respectively]. Current
thinking involves 3c—4e apical bonds and does not favor
significant phosphorus d-orbital involvement.?® Hence a
rationalization is yet to come for a critical assessment of
this observation.

In practically significant systems, the actual pentaco-
ordinate structure could vary between TBP and square/
rectangular pyramidal (SP/RP) geometry. In most cases,
TBP geometry, generally with some distortion, is favored,
and SP/RP geometry is mostly limited to spirobicyclic
derivatives with two unsaturated five-membered rings
with like atoms in any one ring attached directly to
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phosphorus or when more strained three/four membered
rings are present (with only one exception).® A [ess
apicophilic group in TBP geometry is expected to be more
apicophilic in SP/RP geometry.3?®

Berry Pseudorotation and Fluxional Behavior

Intramolecular exchange processes in acyclic pentacoor-
dinate phosphoranes appear to occur mostly through
Berry pseudorotation.’® Even for monocyclic and spiro-
cyclic phosphorane, this is a good option, although in
principle a turnstile mechanism could also be operating.
Barriers to pseudorotation are influenced by charge state,
apicophilicity of ligands, intramolecular hydrogen bond-
ing, cyclic structure, and solvation.®® In the case of mono-
cyclic/spirocyclic phosphoranes with a TBP geometry,
both apical—equatorial < equatorial—apical [a—e < e—a,
process i] and e—e < a—e [process ii] exchanges for the
rings can be envisaged. Scheme 5 depicts this for a set of

Scheme 5
1 (\ 5
0
OCTQ o I°
", 4
M © ”“p———?’ hd et:>?“‘Y Y(4) Pivotal
257 . rmhroughsep 3x7
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v4 o
o, | ¥ o 'a Wy
. L N ~ 2
(ii) S/T Xy =—= 4:?/?_0 etc
1 02 [Through SP] 53 [Through SP]

[e-e ==4a-e (ring)]

spirocyclics; the square pyramidal (SP) transition state is
not shown. Cessation of process i for the o-chloranil
system (cf. Chart 2) would lead to a single 3'P NMR
resonance or very closely spaced signals due to different
conformations of the eight-membered ring (boat—chair
and tub). For the same o-chloranil system, in process ii,
the local environment at phosphorus changes significantly
and at least two well-separated signals are expected if this
is occurring. As an example, compound 19 exhibits the
following peaks in the 3'P NMR:??® 233 K, 6 —42.2 and
—43.1 (1:1, conformational isomers), —47.1; 253 K, 6 —42.8,
—47.1 (e—e and a—e isomers for the eight-membered ring,
process ii); 328 K, 6 —42.8.

Thus it appears that only one isomer is preferred at
higher temperature, suggesting the presence of an “un-
symmetrical potential well”. To our knowledge, such an
unsymmetrical coalescence behavior has not been dis-
cussed in detail in the earlier work.

Multiple choices including tetracoordinate forms (see
later) for isomer formation are available for the dialkyl
azodicarboxylate system (cf. Scheme 4) since the five-
membered ring can have two energetically favorable
dispositions, N(apical)—O(equatorial) and N(equatorial)—
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O(apical). This feature is illustrated by the 3'P NMR spectra
shown in Figure 3 for compound 41. It exhibits three

-39.2
(b) 333K

-63.7

545 634
| I—
A
(a) 243K
A

-30 -40 -50 60 -70

ppm

FIGURE 3. The 3'P NMR spectra of 41 in toluene-dj at (a) 243 and
(b) 333 K. The spectra are reversible in this temperature range.

signals at 243 K [0 —63.7, —63.4, —54.5] but a fourth one
[0 —39.2 (br)] is also seen at 333 K.?® Normal spectral
behavior with a symmetrical coalescence is again not
observed.

The pentacoordinate 1,2-A%-azaphosphetidine, 43a,,
which is the N-apical isomer [X-ray; 6(P) = —29.9], upon

#Ph
Ph
43a (N-apical; X-ray) 43b (C-apical)
8(P) -29.9 5(P) -50.9

dissolution in toluene-ds at room temperature gives an
additional 3'P NMR signal [6(P) = —50.9] ascribed to the
C(apical) isomer 43b.3! In such a situation, since the five-
membered ring at phosphorus has retained its disposition,
it is likely that an a—e < e—e exchange (process ii) similar
to that shown in Scheme 5 is involved here.

If the activation energy for the intramolecular exchange
becomes high enough, it should be possible in favorable
cases to isolate enantiomerically pure pentacoordinate
phosphoranes with chirality only at phosphorus. Com-
pounds 44 and 45 represent two such rare examples.3? In
sterically congested systems, bond rotation can also be
frozen at low temperatures. This is elegantly shown in
compound 46, which shows six separate methyl signals
in the 'H NMR at less than —20 °C.'%c Such a phenomenon
is perhaps responsible for the polymorphism shown by
compound 2 (cf. Chart 1), which can be crystallized in at
least two modifications: one triclinic and the other
monoclinic. The difference between the two is mainly in
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44 1 45 46 Me
[e1”" (CHCI,)
436
R, form +108 (c 1.02) -16 (c 1.07)
Sp form -107 (c 0.83) +17 (c 1.09)

& 3
o \‘\\O

OI
hny,, L% Me:
P—Me
MeO™

(l)_ . NO, g 2
Me ©

NO.

W

2
47a (8(P) -20.70) 47b (3(P) -20.17)
) 25 ) 25
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the orientation of the xylyloxy group with respect to the
rest of the molecule.'®® Configurationally stable pure
diastereomers with five different substituents (e.g., 47a,b)
on phosphorus can also be isolated in favorable cases, if
Berry pseudorotation is sufficiently slow.3® The two dia-
stereomers are interconvertible by heating, but at room
temperature, they are configurationally stable.

To Pentacoordinate or not?

It is now well-established that Phs;PI, and Ph3PBr; crystal-
lized from diethyl ether have a molecular charge-transfer
“spoke” structure PhsP—I—1 or PhsP—Br—Br and not the
pentacoordinate structure originally assumed.** The phos-
phorus in Ph;PF,, however, has a trigonal bipyramidal
geometry.®® Finally, Ph3PCl, when crystallized from a less
polar solvent like diethyl ether is pentacoordinate at
phosphorus, while that obtained from the more polar
solvent dichloromethane had an ionic structure [Ph3PCI---
Cl---CIPPh3]Cl-2CH,Cl; in which phosphorus can be con-
sidered as tetracoordinate. Thus the reactivity of “PhsPCl,”
(which is quite widely used) could vary depending on
solvent polarity.

The equilibria of the types (a) phosphite—phosphorane
le.g., 1,2-(HO)CsH,0OP(1,2-0,CH,) < HP(1,2-0,CsHy)zl, (b)
phosphonium salt—phosphorane (e.g., PCl; < PCl,"PCls "),
and (c) pentacoordinate < hexacoordinate phosphorus
are well-known.?¢ Here we restrict ourselves to two other
examples from our studies. The first one involves penta-
coordinate < tetracoordinate equilibrium (Scheme 6).
Steric factors appear to be responsible for the observation
of the monomeric form 48’ at higher temperatures.?® In
the range 243-295 K, 3'P NMR signals for both the
monomer and the dimer are observed. The second

Scheme 6
Pr--O_ _N
SN\ _C(0)0-i-Pr
) (|3(O)O-f-Pr
o) o) o)
o O~ C,D.CD N _
8\|/\P/8 653 N/\N 8 =
O/P\N/ \\o o\|| I o 0
| Q <8 /P\ /C\
N ) 0" “oupr
PrO(0)C”\ __C
N O-i-Pr

48 [3(P): -74.5 <233K] (X-ray) 48" [3(P): -6.7 >305K]

example involving 49 shows a more intriguing behavior
(Scheme 7). At 255 K, four distinct signals are observed

Scheme 7
(\:ozEt ({OZEt
O',,,. /N—HCOZEt O"',, N\tﬁ
s p = S P=NHBu
7\ 7/ '\
QO \NBU' QO O/C\
, OEt
(X-ray) (49)

49; 5(P; C,D,CD,) = -56.3 (br, 298K)
-50.5, -53.0, -55.7, -56.9 (255K)

in the 3P NMR in the range —50 to —57 ppm. These are
in the region close to that for the pentacoordinate —NH—
i-Pr compound 41 (vide infra). Thus multiple signals for
49 are consistent with the presence of isomeric pentaco-
ordinate species.??

Bond Distances—What Are the Limits?

One of the questions regarding pentacoordinate species
II reported by Lahiri et al.? relates to the long apical P—O
bond distances of 2.0—-2.1 A. In known structures of
pentaoxyphosphoranes, the P—O distances generally fall
in the range 1.57—1.77 A [Cambridge database search,
November 2004]. However, pentacovalent phosphoranes
with longer apical P—O distances do exist [e.g., 28, 50].22237

Y, Ph
7 |
o, | P, |
~P—N=PPh, ph/l \
o |
) 0]
¢ o\
1.831A 2214 A
Cl cl 28
al 50
His57
H Ser195
NN
\=N +
\ O
o H
R—BU_ -
| °~ water
PhO

51 (Hydrogen bonded)
Cation: [HN(CH,C¢H,-3,5-Me,-2-OH),]*

52 (R = Aminoalkyl
peptide residue)
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As shown for 51, this distance could still be longer,
depending on the extent of contribution from coordinate
covalent character.® If the P=0 (equatorial) oxygen is
involved in hydrogen bonding or if it abstracts a proton,
the apical O—P bond could shorten and approach the
covalent bond distance. The hydrogen bonding interaction
could also affect the reverse phenomenon. The structure
of Il is anionic around phosphorus with apical carboxylate
oxygen, and with significant hydrogen bonding. Thus the
observed apical P—O bond lengths appear reasonable.
Stabilization of pentacoordinate phosphorus intermediate
through hydrogen bonding has also been demonstrated
recently in the X-ray structure of the complex (52) of
human a-thrombin with the inhibitor (c-aminoalkyl)-
phosphonate.*

Compounds 53 and 54 are two examples in which the
P—0O bond distance falls below the normal range [Figure

oo T o]
\|/ t-Bu t-Bu
P
N NS
0 o . o CN
[HNEt,] SP—o0
o) O 342 / \
~_. EtO \
P OEt
NS 1.513A
0 o_ 0 ’
L s
53 1498A 54
F.Cc. £Fs
X o < Me
[ NP Na
" S-S Me—Ne~ |
Ar/ | || CF, Me—n /F|> N=PPh,
JACERH N 1589A
2.147A Ph 0 Me
Ar = 2,4 6-(-Pr),C4H,
55 56

4a].%3° Thus the variation in P—O single bond distances
is of the order of 0.6 A. The P—N bond distances also span
a large range (generally 1.60—1.80 A), but examples of
extremes (55 and 56) are also known [Figure 4b].*
Relatively speaking, the range of P—C bond distances is
narrow (1.70—1.95 A), and the extremes are 1.688 and
1.987 A. This range is less than that for P—O or P—N
distances and is expected since carbon does not have a
lone pair of electrons to interact further with phosphorus.

Summary and Outlook

The previous notion on the site preferences in pentaco-
ordinate phosphorus needs modifications in the light of
what is discussed above. Earlier experimental scales of
apicophilicity have been built mostly by activation barrier
(NMR) to pseudorotation, a kinetic feature. However, an
ideal scale should be based on stabilities of different
isomers, a thermodynamic feature.?®® This aspect needs
to be evaluated more thoroughly. The 3c—4e bond con-
cept for the apical bonds in TBP geometry, rather than

330 ACCOUNTS OF CHEMICAL RESEARCH |/ VOL. 39, NO. 5, 2006

150 —

100

T

No. of hits 7

50

10 4

1.45 1.65 1.85 2.05 225
o
—= P-O distance (A)

150

| T |

T 100: (b)
No. of hits 7]
50 <

10 A

1.45 1.65 1.85
—= P-N distance (a&)
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connected to five atoms only, Cambridge Database, November 2004]:
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any significant involvement of phosphorus d-orbitals,
seems to be the model of choice.?! This theory also
rationalizes the longer P—X apical distances in TBP
geometry, sometimes going much beyond the Shoemaker—
Stevenson equation (e.g., 50 and 55). The xz-bonding
effects involving the lone pair of electrons on nitrogen and
phosphorus d-orbital do not seem to be valid, and if so,
more theoretical investigations of orbitals involved in such
interactions is to be undertaken. Two areas that could
catch up in the future are (i) the isolation/understanding
of phosphoranes of biological relevance/interest and (ii)
use of pentacoordinate compounds as precursors for
organic synthesis. Recent structural characterization of
thymidine and substituted inositol-based phosphoranes
are in this direction.*> However, systematic stabilization
of anionic phosphoranes (perhaps through hydrogen
bonding) of relevance to enzyme action and RNA cleavage
(such as 52) would require more planning.

As regards utility, the chiral pentacoordinate phospho-
rane (Me,N)P[2,2'-0;-(CyoHg)2] [N(CO,-i-Pr)NC(O-i-Pr)O]
(57; 6(P) —36.7) that is analogous to some of those
discussed above (34—40) could be utilized for the kinetic
resolution of secondary alcohols (with ee up to 40%) in
an asymmetric Mitsunobu reaction (Scheme 8).1? Studies
such as extrusion of an olefin directly from pentacoordi-
nate phosphetane, the second step in the Wittig reaction,
will be useful in furthering our knowledge of the mech-
anism.'3** Enhanced reactivity of pentacoordinate sili-
conates relative to their tetracoordinate counterparts, in
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say, allylation reactions is well-known;® corresponding
studies on the use of pentacoordinate phosphorus is a
relevant area.

57

Chiral P—H spirophosphoranes 58 undergo asymmetric
addition with prochiral aldimines and, after selective
hydrolysis, afford a-(amino)phosphonic acid amphiphiles
59 in both enantiopure forms (Scheme 9).%4? Hydrido-

Scheme 9
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59

phosphorane, HP[OCH,CH{ CH(Me) (Et)} NH],, derived from
iso-leucinol, forms chelate complexes with PdCl,(RCN),
in its tautomeric open P™ form. These palladium com-
plexes catalyze enantioselective alkylations.**® Thus chiral
and catalytic phosphorane-based systems are likely to be
an attractive area for further exploration.
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